Saturday, October 31, 2009

History of mathematics III

Egypt

Egyptian mathematics refers to mathematics written in the Egyptian language. From the Hellenistic period, Greek replaced Egyptian as the written language of Egyptian scholars, and from this point Egyptian mathematics merged with Greek and Babylonian mathematics to give rise to Hellenistic mathematics. Mathematical study in Egypt later continued under the Arab Empire as part of Islamic mathematics, when Arabic became the written language of Egyptian scholars.

The oldest mathematical text discovered so far is the Moscow papyrus, which is an Egyptian Middle Kingdom papyrus dated c. 2000–1800 BC.[citation needed] Like many ancient mathematical texts, it consists of what are today called word problems or story problems, which were apparently intended as entertainment. One problem is considered to be of particular importance because it gives a method for finding the volume of a frustum: "If you are told: A truncated pyramid of 6 for the vertical height by 4 on the base by 2 on the top. You are to square this 4, result 16. You are to double 4, result 8. You are to square 2, result 4. You are to add the 16, the 8, and the 4, result 28. You are to take one third of 6, result 2. You are to take 28 twice, result 56. See, it is 56. You will find it right."

The Rhind papyrus (c. 1650 BC [2]) is another major Egyptian mathematical text, an instruction manual in arithmetic and geometry. In addition to giving area formulas and methods for multiplication, division and working with unit fractions, it also contains evidence of other mathematical knowledge[21], including composite and prime numbers; arithmetic, geometric and harmonic means; and simplistic understandings of both the Sieve of Eratosthenes and perfect number theory (namely, that of the number 6)[3]. It also shows how to solve first order linear equations [4] as well as arithmetic and geometric series [5].

Also, three geometric elements contained in the Rhind papyrus suggest the simplest of underpinnings to analytical geometry: (1) first and foremost, how to obtain an approximation of π accurate to within less than one percent; (2) second, an ancient attempt at squaring the circle; and (3) third, the earliest known use of a kind of cotangent.

Finally, the Berlin papyrus (c. 1300 BC [6] [7]) shows that ancient Egyptians could solve a second-order algebraic equation [8].

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home