Saturday, October 31, 2009

Asas Algebra..

Algebra (bahasa Arab: الجبر, al-jabr yang membawa maksud "gabungan, sambungan, atau pelengkap") ialah cabang matematik yang berkaitan dengan kajian struktur, hubungan, dan kuantiti. Algebra asas sering dijadikan sebahagian pendidikan sekolah menengah untuk memberikan pengenalan kepada idea-idea asas algebra: membelajari apa yang terjadi apabila nombor-nombor dicampurkan atau dikalikan, dan bagaimana membuat polinomial dan mencari punca tersebut. Abu Abdullah Mohammad Ibn Musa al-Khawarizmi merupakan bapa algebra.

Rangkuman algebra adalah lebih luas berbanding algebra asas dan dibuat lebih umum. Berbanding dengan hanya menggunakan nombor-nombor, seseorang boleh menggunakan anu yang terdiri daripada simbol, pemboleh ubah, atau unsur set. Penambahan dan pendaraban dilihatkan sebagai operasi am, dan definisi tepat untuk operasi-operasi ini menghasilkan struktur seperti kumpulan, gelanggang, dan medan. Bersama-sama dengan geometri dan analisis, algebra merupakan salah satu daripada tiga cabang utama matematik.


Algebra asas ialah bentuk algebra yang termudah. Ia diajarkan kepada para pelajar yang dianggapkan tidak mempunyai ilmu matematik sebalik prinsip asas ilmu kira-kira. Walaupun dalam ilmu kira-kira, hanya nombor-nombor dan operasi arithmetik (seperti +, −, ×, ÷) wujud, dalam algebra, nombor sering ditandakan oleh lambang (seperti a, x, y). Ini berguna kerana:

  • Ia memberikan rumusan umum peraturan arithmetik (seperti a + b = b + a for all a dan b), dan inilah langkah pertama untuk penjelajahan sistematik pada sifat sistem nombor benar.
  • Ia memberikan rujukan kepada nombor "tidak dikenali", rumus persamaan dan pelajarannya untuk bagaimana mahu menyelesaikan ini (contohnya, "Carikan nombor x sedemikian hingga 3x + 1 = 10").
  • Ia memberikan rumusan fungsi berkenaan (seperti "Kalau anda jual x tiket, kemudian untungan anda akan menjadi 3x - 10 dolar, atau f(x) = 3x - 10, dimana f ialah fungsinya, dan x ialah nombor fungsi yang dijalankan.").
Algebra abstrak atau algebra niskala dikembangkan ke konsep mirip yang didapati pada algebra asas dan perkira-kiraan nombor untuk konsep umum yang lebih.

Set: Berbanding hanya mengambil kira jenis nombor yang berbeza, algebra abstrak melibatkan lebih konsep set: satu kumpulan objek yang dipanggil unsur. Semua jenis nombor adalah set. Contoh lain bagi set termasuklah set matriks dua-dua, set semua tertib kedua polinomial (ax2 + bx + c), set semua vektor dua dimensi pada satah, dan pelbagai kumpulan terhad seperti kumpulan kitaran yang merupakan kumpulan integer bermodul n. Teori set merupakan cabang logik fan bukanlah cabang algebra secara teknikal.

Operasi dedua: Tanggapan yang penambahan (+) akan memberikan operasi dedua, katakan *. Bagi dua unsur a dan b dalam sebuah set S, a*b memberikan unsur lain dalam set (secara teknikalnya keadaan ini dipanggil penutupan). Penambahan (+), penolakan (-), pendaraban (×), dan pembahagian (÷) adalah operasi dedua seperti penambahan dan pendaraban matriks, vektor dan polinomial.

Unsur identiti: Nombor kosong atau sifar dan satu diabstrakkan untuk memberikan tanggapan sebuah undur identiti. Kosong adalah unsur identiti untuk tambahan dan satu adalah unsur identiti untuk pendaraban. Bagi pengoperasi dedua umum * unsur identiti e harus memuaskan a * e = a dan e * a = a. Ini tertakluk untuk penambahan sebagai a + 0 = a dan 0 + a = a dan pendaraban a × 1 = a dan 1 × a = a. Walaubagaimanapun, kalau kita mengambil nombor tabii positif dan penambahan, tiada unsur identiti.

Unsur songsang: Nombor negatif memberikan konsep unsur songsangan. Bagi penambahan, songsangan bagi a adalah -a, dan pendaraban songsangan adalah 1/a. Unsur sonsangan umum a-1 haruslah memenuhi syarat yang a * a-1 = e dan a-1 * a = e.

Kesekutuan: Penambahan integer-integer ada sifat-sifat dipanggil kesekutuan iaitu pengumpulan nombor untuk ditambah tidak akan memberi kesan kepada jumlahnya. Contohnya: (2+3)+4=2+(3+4). Pada umumnya, ini menjadi (a * b) * c = a * (b * c). Sifat ini dapat dikongsikan oleh kebanyakan operasi dedua tetapi bukan penolakkan atau pembahagian.

Kalis tukar tertib: Penambahan integer-integer juga mempunyai sifat yang dipanggil kekalisan tukar tertib iaitu turutan nombor-nombor yang perlu ditambahkan tidak akan mempengaruhi jumlahnya. Contohnya: 2+3=3+2. Pada umumnya, ini menjadi a * b = b * a. Hanya sesetengah operasi dedua ada sifat ini. Ini bersesuaian untuk integer-integer dengan penambahan dan pendaraban, tetapi ia tidak sesuai untuk pendaraban matriks.

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home